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Theory of the Dipole Antenna
and the Two-Wire Transmission Line *

by

Tai Tsun ‘Wu
Gordon McKay Laboratory, Harvard University

Cambridge, Massachusetts

Abstract

The properties of the dipole antenna are studied by an approximate
procedure that makes use of the Wiener-Hopf integral equation. In particular,
the input admittance and the radiation pattern are found. Simple formulas are
obtained only when the dipole antenna is more than one wavelength long. The

present results thus supplement the existing theories, which are concerned

mostly. with shorter dipoles.

The same procedure is then applied to several related problems. First,
the back-scattering cross section of a dipole antenna is found approximately
for normal incidence. Secondly, the two-wire transmission line is studied in
detail by considering it to be two coupled dipole antennas. The capacitive end-
correction for an open end is evaluated, and the radiated power and the radia-
tion resistance are found for a resonant section of tranemission line with

both ends open. Finally, the dielectric-coated antenna is :onsidered briefly.

*Supported in part by NSF Grant 9721-7750 and Contract Nonr-1866(32).
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Introduction

The problem of the center-driven cylindrical antenw« has been investi-
gated by numerous authors. There exist now principally three kinds of attacks:
iterative procedures, variational methods, and Fourier series expansions.
Recently, Duncan and Hinchey 1 wsed the last method to get some extremely
interesting results. To employ this method, it i3 essential to carry out the
calculations on a high-speed digital computer. Ths other two kinds of methods
are described in detail in the monumental book of King 2 , which will be

s 3 3 3 A\
designated by K in subsequent references. For convenience, numserous

references will be made to this book instead of the original papers.

For thin dipole antennas of length not much more .tha.n one wavelength,
the King-Middleton iterative proced;xte [K, p. 101 ££] ﬁelds current distribu-
ions in good agreement with the experim;antal results. So far as the input
impedance is concerned, the various iterative and variational methods seem
to give comparable results fc;r thin antennas not much more than two wave-
lengths in total length [K, p. 843]. If h is the half-length of the thin antenna,

it is reasonable to think that cases where h -sg)\ are fairly well understood.

The situation is much less favorable for h > \. Both theoretical and
experimental results are very scarce in this vast range of antenna lengths.
So far as the author is aware, the following three pieces of information are

available:

1. First-order King-Middleton distributions of currents for antennas
with h = 6\ [K, p. 115],
2. Robert's measurement of current distribution for an antenna

with b ~11 \ [K, p.140], and
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3, Altshuler's 7- recent measurements of current distributions ons

for antennas with h ~2\.

No genaral conclusions can be drawn irom these results, except that there is
essentially no evidence of any agreement between theory and experiment.

A more direct comparison is possible in the related problem of the determina-
tion of the back-scattering cross sections of a dipole receiving antenna at
normal incidence [K, p. 508, p. 516]. Here the theoretical and experimental

results are certainly in disagreement tor h 0.8 \.

If these few pieces of experimental data are not dismissed as incorrectly
recorded, then one is forced to consider the possibility that the existing ting
theories of the dipole antenna may be inapplicable when hX ). An iterative iterat
procedure is one which gives correction terms to an instial, rouéh approxima- pproxi
tion of the current distribution. Since usually nnly a small number of itera-
tions can be carried out, the accuracy of the results depends critically on
the accuracy of the initial approximation, Since the iterative procedure
itself can hardly be questioned, an explanation of the discrepancy between
theory and experiment may be sought in the inadequacy of the initial

appruximation.

This paper is devoted to the following question: Starting from the in-
tegral-equation formulation of the antenna problem, how can one get a rough
approximation to the various characteristics of the antenna? This is
properly the first step of an iterative procedure. However, unless this
approximation is of an unrealistically simple forrn, no iteration can be con-
veniently carried out. Therefore, in determining this rough approximation,

it should be kept in mind that the result must be at least semi-quantitatively
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correct before it is of any interest or of any use. A possible answer to thie
question is given in Part I for the center-driven dipole antenna. In Part II,
the same procedure is applied to a few somewhat more complicated cases.
The interest is mostly centered around the situation when the dipole antenna
is several wavelengths long.

Throughout this paper, anly symmetrical, center-driven antennas are
treated. The generalization io asymmetrical cases seems to offer no diffi-

culty in principle.
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Part I. The Center-Driven Dipole Antenna

1. Formulation of the Problem

The dipole antenna is assumed to be a symmetric tubular antenna of
zero thickness and infinite conductivity defined by r = a, | g_l < h, as shown
in Fig. 1. If 1(z) is the total z-component of the .cwrrent at z, including

both the current on the outaide of the tube and that on the inside, then

I{h) = 0, (L:1)

and the z-component of the vector potential on the cylinder x = a is given by

h
"
Az) = -4—;’- S dz' I{(z') K (2 - 2") ,
‘h
(2.2)

where o is the free-space magnetic permeability and the kernel K is
given by
1 1

k'3
. z
K(z) = (2%} 5 a0({z? +(2asin 0/2)%]  exp{: k [z% +(2a sin0/2)?] }.
-7

(1.3)

Here k is the wave number. As usual in antenna theory, the term ''vector
potential" is us2d to denote the vector potential in the Lorentz gauge satisfying
the Sommerfeld radiation condition. On the other hand, if the strength of the
&-function generator is taken to be -1, the z-component of the vector potential

is of the form

T
A(z) = > [GCeoskz + — sin k|z]] (1.4)
(]

for |z | < h. Here o 18 the characteristic impedance of free space. The

e - oo - e - - BN M.-,,,N,‘“,l
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combination of {(1.2) .and (l.4). .gives: the: integral equation for 1(z),

where T is to be determined by the boundary condition (1, 1).

™ the King-Middieton iterative solution, the vector potential is assumed
7 be proportional to the current at the same point in order to get the initial |
rough approximation. This assumption is reasonable except near the ends of
the dipole antenna, where the current changes rapidly with z. Unfortunate'ly,
ths value of the constant’ C is determined at z = h, precisely wheie this
approximaticn is poor. It is here proposed to find C by a different procepure,
~saking use of the observation that é(g) is relatively small for I fl >_l_1 | H

. i
[K, p.429, p.527]. This observation is useful because then the antenna may be

approximated by a semi-infinite one driven by a vector potential diatributi?n
which is of t'.- form -{(1.4) for l _z_l <h and is zero for z >h. Conael-

cuently, the problem of the semi-infinite antenna is to be studied first,
2. The Semi-Infinite Antenna

The semi-infinite antenna is described by an integral equation of the

MERARCTATIY DAL TR

Wiener-Hopf type:

[+
S‘ dz'Il(z') K(z-2') = F(z), {2.1)
o

AT I

where E(E) is known for z >0. Itis assumed that F(0+) and F'(0+) both

exist, and F(z) approaches zcro sufficiently rapidly as 2z *o. Under these

circumstances, I(z) is in general unbounded near z = 0. If, however, F(z)

satisfies 2 certain integral condition, I(z) becomes ounded near 2z = 0, and

furthermore lim I(2) = 0. .Itis desired to find this integral condition.
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For this purpose, the usual Wiener-Hopf procedure may be used.

Consider k to have a small positive imaginary part which is eventually

allowed to approach zero:
Imk =e>0,

and define the rclevant Fourier transforms by

Iy = ? dz I(z) exp (-i $z} ,

(]

@ 1
R() = 5‘ ds Kiz) exp (-ifz) = xiJ_[a (k% 5 4
-

©
F () = S‘ dz F(z) exp (-i §2z) ,
Q
and 0
F+(§) = S‘ dz F(z) exp (-i $2) .

-0
Then {2.1) leads to

TEIR(D =F_(5) + F 48 .

For any function £ of ¥ analytic in the strip |tm ![ < e, define

c?+i¢/2
[((2)]_ = - (2xi)" ! S at (@€ -y tecey
-0 +ie/2
and
®-ief2
(420, = (=)} ag (g .otz
-m-ief2

R e - - - B L I P o S N N

(2.2)

(2.3)

1
HWian?- 37,

(2.3b)

(2.3c)

(2.3d)

(2.4)

(2.5a)

(2. 5b)
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where the Cauchy principal values are taken at . Then [£ ()] _ is
analytic for Im § < ¢/2, and [f(¥)], is analytic for Im § > -¢/2,

Furthermore, inthe strip |[Im$ | < /2,
f.(!). ='[£(§)]_ +[£(5)], .
In terms.of the function K ({), define
L,(8) = exp [FanKR ()],

then

K(8) = I—a_(§)/f+(§)
for lim¢] < € /2, and furthermore,
L =gt

From (2.4) .and -(2.8) it follows that

TOLAY - [FAT D] = [FADEUN] +F (DT (D),

(2.6)

(2.7

(2.8)

(2.9)

(2. 10)

This defines an entire function, which must be zero because of the behavior at

infinity. Therefore,

THT AL = [F (D L (O],

(2.11)

It is aasumed that 1(z) has no singularity at z = 0. Thus, as | ¢] * o in

the half plane [Im £ | < ¢/2,

() = o Jg| N,

(2.12)

-3
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and furtherraore 1

TH=0(l8)% . (2.13)
It,therefore, follows from (2.1}). that
[F_ (0 T =scltl Y,
(2.14)

as |8] » o . Thisis the required condition on F{(z).

In order to put" (2.)14) in a simpler form, let ¢~ 0 + and note that
K (¢) is analytic in the cut plane as shown in Fig. 2. Furthermore, the con-
tours used in defining [f(z)] + Doth become Eo , also shown in Fig, 2, and
r_,_ (%) and f_(!) are anal.;vtic in the entire complex plane except respec-
tively the left and the right branch cuts of K (§). Define

F(0+4)

- 0 L—d
F (5 =F (%) - ; TR) ¢ (2.15)

then 'f_o (%) f+ (%) is integrable along _Qo, at least in the sense of Euler

summability. Therefore, the left-hand .side of 12,14) ie explicitly

[FAOTLOT = RO [qrgr TADT. +[F.200 Tu0).

= . (zwi)'1 5‘ az (¢ -r)'l?_°(§)i+(§), .

Co (2. 16)

The condition (2. 14) 1s thus explicitly

S at F LT L) = o,

cO

(2.17)

[P~ |

[ e

Ck amaa m e awt WA e S .-,-Awl

R “&wﬁép!ﬂium}; .

(2.13)

(2.14)

(2.15)

(2. 16)
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; 3. Approximations for Thin Antennas

The condition (2.17) for the vanishing of the current at the end of the
semi-infinite antenna is exact. This rather complicated condition can be
greatly simplified if it is assumed (1) that the antenna is thin in the sense
that a/\ << 1 and (2)that the characteristic distance ﬁl':r the variation of
E(z) .is much larger than .a . Under the second assumption, which is
satisfied if the right-hand gide of .(l..4) is tuken to be F(h-z), the
behavior of L H3) for g~ g'l is unimportant, and thus it is permissible to

use the following approximation of K(¥):

K($) = 28, - fa (k% B/K?

' (3.1)
where
Ql =9°+i1"/2 (3.2)
and
Q@ =4n(2/ka)-vy . (3.3)

o
In (3.3)., vy is Euler's constant, numerically about 0.57722. In view of a
previous discusaion? on the. meaning of the input admittance of a linear
antenna driven by a delta function, the approximation (3. 1) does not introduce
any further error beyond those inherent in the model of the delta-function

generator. Once (3,.1) is used, it is possible to define

M) = (Kot (3.4)
M%) = 3‘3 dz M(z) exp(-i $2z) , (3.5

-00

and ©
I}(c) = S‘ dz L (z) exp (-ifz) . (3.6)

-0
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It should be emphasized that M(z) and _L_+(z) are meaningful only when
an approximation of the type (3. 1) is used. The exact M(%) and T A %)

are not the Fourier transforms of integrable fuactions.

First, an approximation is to be found for M(z), which is giver by

©
M(z) = ik(Ztr)_1 1z Sl dﬂe'kzg' %Go -In[E(2+i8)] - -1%'-
o

-1
- {Zﬂo-ln[E(Z +iE)] + 3—;1}

for z >0. When z is not too small, it will be a reasonably good approximation

(3.7

to replace In (2 +§) in the integrand by £r 2, and replace In £ by the average

(V) . -1
[ y af k%% fdge'k"g EnE =in (kz) - V.

o [+}

(3.8)

With these replacements, (3.7) becomea

M(z) = i(zma) ! ™ [(20 -tn 2

(3.9)

| M (z) Ic_i_z exists. The same statement is true of _I:+(-z).

-

00
Therefore S‘
1

If the integral equation had been written in terms of the electric field instead
of the vector potential, the corresponding M and L + functions would not have
this property, i.e., they would not approach zero sufficiently rapidly. The
rapid decrease of M and L, implies that the hehavior of A for z>h is

relatively unimportant in the present calculation. As will be seen in Sec. 8,

. ‘-1
. ir -1 . 3im.
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the condition that M and ...Ii.;- should decrease sufficiently rapidly dictates

the choice of the differential operator that gives E from A,
4. Application to the Dipole Antenna

To apply the results of the last two sections ta the dipole antenna, it is

convenient to define for Z >0.

©
5(2) = g d ¥ M%) S‘ dz exp (-ilz) sinkz H(Z -z),
o

° (4.1)

T(Z) = S at MgS) T dz exp (-i8z) [ cos kz H (Z-z) - exp (-ikz)] ,
co ° (4. 2)

s{z) = S a8 £+(§) y dz exp (-i8z) sin kz H(Z -z) ,
Co ° (4.3)
and
@
THZ) = S‘ day E+(§) 5 dz exp (-i¥z) [cos kz H(Z-z) - exp (-ikz)],
C o
° (4.4)
where H is the Heaviside function
1 x>0
Bi{x) =
0 x<D,
By comparing (1.2) and (1.4) with (2, 1), it is seen that for the

dipole antenna and for z >0

Flz) = 4ni8_ "' [Ccosk(h-3 + gsink [h-zl] H(Zn-2),
(4.5)
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which may be alternatively expressed as
F(z) = 4758 ! [sinkh cos kz H (h - 5) - cos kh sinkz H (b - 2)

+ (C cos kh --é- sin kh) cos kz H (2h - z) + (C sin kh +%cos kh) sin kh H (2h - 2)],

(4. 6)
When this is substituted into (2.17), the. resuilt is, using (4.3;4),
sin kh ‘T'(h) - cos kh S'(h) + {C cos kh - -%- sin ki) T'(2h)
+(C sinkh + 5 cos k) §' (2h) = 0, (4.7)
The constant C is thus explicitly given by
C= -% [cos kh T'(2h) + sin kh S'(2h)] "} {sin kh [ 2T'(h) - T*(2h)]
- coskh [25'(h) - S'(Zh)]} . (4. 8)
On the other hand, it follows from (4.,5). that .the input admittance of th»
antenna is
Y=2it (S +cum), (4.9)
where

2

u(z) = S df M (%) 5 dz exp (-ifz) cos kz ,

C z
° (4. 10)

In order .to put "(4. 8).and (4, 10) in forms that are easily computed,
many approximations have to be made. . In (4.1-4), the contour Go can
be deformed .so that it is wrapped around the left branch-cut. When kZ is not

too small, the contributions to the four functions, insofar as the §-integral is

2h - z)
(4.

(4.

(4.

can

is no
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concerned, come mainly from the region ] C+k ] Z < 1. On the other hand,
from {2.8). Z+ (%) is the same as M ({) I (), where ' T_ (%) is
analytic in the vicinity of §= -k. Therefora, approximately

s(2) = T_ (k) §(2), (4.11)

and

T'(Z) = L_(-k) T(Z) (4.12)

Since dipole antennas with kh < 7 are well understood in terms of the King-
Middleton theory, the task here is.thus to calculate S(Z), T(Z) and U(Z) for

kZ large. This i3 carried out in Appendix A, with the results

' 2
25(Z) = -tn[l+m @ - fn 27 - - l@, - 24a 22 . @, - 24n 2 +7i)~ 9]

+n {[02(2)1'1n3(z;} + %\r'{[ﬂ?_(z)l'2 - (2, (Z)l'z}

-1 (2k2)"! exp (21k2) {[ a, 2)]"! - (8, (zn'l} (4. 13)

. . -1, xf -2 -2y
-ZxT(Z):-ln[1+1r1(Qo-ln2) ] - ﬁ[(ﬂo-ZInZ) - -O—Zln2+1u) z]’

N'D—'

- tn {[nZ(Z)l"a3(Z)} -V {[QZ(Z)J'Z-[03<Z)J‘Z}

- 1 (2k2) ! exp (2ik2) J[@,(2)] 7 - (a2, (2] M) (4.14)

o~

and
. -1 1 -2 -2
iU(Z) =In {[QZ(Z)] 03(Z§ 5 Y {[uz(z)] - [93(2)] }

+i(2x2) ! exp (2 ik 2Z) {[nz @]t - [93(3)]'1 ) (4.15)

15)
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In (4..13 ~15)., the following eymbols have been used:

2,(2) = 2(8 -fn2) +4n(2kZ)*¥-iw/2 , (4.16)
R;(2) =2@_ -Ln2) +&n(2k2) + Y +3inm/2 , (4.17)

and
v = wm-v?, (4.18)

v' is numerically about 11,6449,
5. The Radiation Field

The procedure. of Sec. 4 may be used to get the current distribution not
close to either the generator or the ends. However, this point is not studied

further because excessive numerical computation seems to be necessary,

Let a spherical coordinate system (r, 9, é) be set up such that the ends
of the antenna are at (h, 0, ) and (h, w, é ). All field quantities are independ-

ent of ¢ because of rotational symmetry. Define the field pattern by

F({Q) = -1lim E° (r,9) rexp (~-ikr) ,
T 00 (5.1)

By (1,2), ‘this is -

F(0) =iwp_ (4 ! sin 0 dz 1(z) (27}

ey

3‘ do' exp[- ik (zcos 0 - a cos 0'sin 0)] .
-7 (5.2)

-
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When the smali term proportional to a is neglected, this simplifies to

tex)

F(Q) = iwp.o (41r)'1 T(kcos®)sing ., (5.3)

Within the framework of the present approximatior, this is simply

F(0) = - % #in 0[8 |- 4nsin 0] {c sin[ka(l-con 0)] , g sin[kh(l+cos O)]
+ L 1 - cos[kh(l - cos 0)] + L1 - cos [kh (1 + cos 0)]
2 l-cos@ 2 I +cos .
(5.4)

This differs from the usual zeroth-order field pattern only in the appearance
of the factor [9; -£n sin 0] -1 when C is chosen in a sufficiently simple

way. For a long dipole, this factor has the effect of reducing the end-firing

major lobes.

Jree= N
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Part 11, Generalizations

LIRS Y8 S IR D SR R

6, Dack-Scattering Cross.Section

In thia and the two following sections, the procedure of Part 1 is to be 1

applied to thrae situations mathzmatically similar to the one already treated.

The first problem is the determination of the back-scattering cross section of

an unloaded dipole antenna at normal incidence. The geometry is shown in

A B T Y L R A N B YR DRI

g

Fig. 3. Without loss of generality, the incident electric field i taken to be

1 at x =0. Since, the radius a of the dipole antenna is assumed to be very i

T TR e e

small compared with the wavelergth, the scattered field is considered to be

o tame.

rotationally symmetrical. Under this approximation, the current induced on
the antenna satisfies the integral equation:

h
S dz' Is (z')K(z-2') =4%i (p.ot.o)-1 [1 +st cos kz] |
-h

(6.1)

st ool WA

T Tt i e wan,

Here the subscript s is used to distinguish the present scattering problem,

and the constant C g 18 to be determined from the boundary condition.

I(h) = 0. (6.2)

In terms of I‘ » the back-scattering cross section is

h
- -1,2 2 2
C'B = (41‘) (2] P.O ‘ 5 dz IB (Z)‘ . (6-3)
-h
Within the framework of the approximations used in Paxrt I, this is given by
=4nl@ | |n+ck sinkn|?,

8 (6.4)
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Without the C g terin, this is just the .nonresounant. formula of Chu 5._ .

As in the case of the driven antenna, the value of C s is to be

determined from (2..17)., with. the. following  form for F,

F (s) = d4wilu @) '[1+C cosk(h-z)] H(2-z), (6. 5)

It is' thus useful to define

[ +]
viz) = Sag L, @) 5 dz exp (-i8z) [B(Z - 2) - exp (-ikz)]. (6.6)
o

o
Thus Cs is given by

‘G, = - V'(2h)/[ cos ki T'(2h) + sin kh §'(2)] , (6.7)

or approximately with (4.1i-12)
c, =-V (Zh)'r.+(k) / [cos kh T {2h) + sin kh S(2h)] , (6.8)

From . (6.6}, V. is found to be

-1
v (Z) = zn‘f.+(o) + i[‘r.,,(k)]'1 S‘d’: r'lexp (- i¥kZ) 7

-0

{[zno S Y (LR R T JE P T LT 2 3 ]'1} .
(6.9)

For kZ large, this is approximately

ViZ) T, (k) = 2% T, (0) T (k) +2 ™2 {[uz(z)]'l - {03(2)]'1} ©16.10)
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-

To avoid numerical integration, it is convenient to use

T, T (k) ~(2a)"}, (6.11)

The explicit formula for the back-scattering cross section is given by (6.4) ,

with -(6.8) -and .(6.10.-11). .
7. The Two-Wire Line

In principle, the method of Part lis.applicable to the case of a system
of two ideatical, nonstaggered, parallel dipcle antennas as shown in -Fig. 4
provided thac it is admissible to assume that the current distribution is
rotatjionally symmetrical on each dipole. This assumption is reasonable if
the antennas are thin and if the separation b between the antennas is not too
small. If the symmetrical and antisymmetrical parts of the curents are used
to set up integral equaticns, then the present case differs from the case of a
single dipole only in the appearance of u more complicated kernel. For

example, the kernel for the antisymmetrical pavt of the current is

-1/2 /2
K, (z) = K(z) - (2% +b?) exp [ik (z% +b%) ],
(7.1)
with the Fourier transform
1/2
R (8 = RO -wig Dp?-ty) ] . (7.2)

The kernel Ks for the symmetric part of the current differs oniy in a sigh.

Besides a this problem is characterized by three lengths: \, h, and b.
In the general case, it seems difficuit to get easily computabie formulas from

these kernels. When kb << 1, the Ho(l) in the Fourier transforms of the
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kernels may be replaced by a logazithm, analogons to. (3.1}). .

where

-20-

R (%) = z{z"al‘-ln Lo - :2)/kz]} ,

Q

1

. = n[2/ (k*ab)

1/2
]‘Y'

In particular

{7.3)

(7.4)

A well-known result follows immediately .from {7.3-4)., namely:; that the..

equivalent radius of this antenna system is (ab)

1/2

[K, p.275]. In more

general cases, the present point of view reproduces all the resuits of

Harrison and King

5

.. on. effective radii,

In the remaindar of this section, the following special situation of the

antisymmetrical case is to be considered

KbZ /A << 1 .

Furthermore, attention is to be restricted entirely to the approximate

(7.5)

determination of the total power radiated and the capacitive and correction,

both topics outside of tne realm of conventional transmission line theory,

An important difference between the present case and that of a single dipole

antenna is that ’Ka( ) is bounded in the vicinity of £ = -k while K(%) is not.

Consequently,

Note that f+ a (§) etc. are defined analogous to T..+ (%) etc. except that

but

T,k # 0.

R; {8) is us—ed instead of K(f). Because ol (7. 6)—. {4, 4)_cannct. be

generalized to the present case without modification. Lnstead, define

w2 = (arc o0 (e ininm.

C

[+

Z

o

-0

(7.6)

§ dz exp (-i ¥z - ikz)].

(7.7)
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If for large *Z only terms of the orders Z° and z7! are kept, w may be
evaluated approximately to be
U R
WeiZ)h =2v L, (), (7.8)
and
' — ik ]
W_(2Z) = 2% L+a (-kj |1~ e .
4ZLn (b/a) 4
(7.9)
The constant Ca in the integral equation for the current,
h
Sdz' L(z)K, (2 -2) = 47iZ "] [C,coskz + 1 sink | zl],
~h
(7. 10)
is determined from the boundary condition Ia {h) = 0. It follows from (4,.6) ..
and (7.7).that -
3 t -1 -
C =4 i[e™W (m)+e by (2w} ?
ikh ' 1 -ikh t '
{e‘ [2W_ (h) - W_(2h) ] -e [2W, (b) - W_(2.1) ]} . (7.11)
In this formuia, insofar as -I_"+a (%) is concerned, only the ratic

enters., Ea. (7.12) defines the real numbers rand h

o The quantity hc is

to be interpreted as the apparent change in line length due to the capacitive end

correction. In the language of transmission line theory, hc is equal to the

S IR Y b g ey
.

y be

(7.8)

(7.9)

(7.10)
4."6). ’

(7.11)

(7.12)
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(7.9)

{7.10)

F_..b). o
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apparent terminal capacitance divided by the capacitance per unit length of the

infinite line. The substitution wf (7,12) into :{7. 11} gives

. -1
1. . i
C, = -gi[1+01- 3 Al [1-0- S a],
where
a = 4 k% /tnb/a) |
and

A = r‘exp[Zik(h +hc)]

In terms of C 2 the input admittance ie 7

, = 218 " [s (8} +C, U_ ()],

where Sa and Ua are analogous to (4..1) and .{4.10) respectively:

Z
-1
5,(2) = S‘ d¥ [Ra(f)] S‘ dz sin kz exp (- i§2) ,
)

C
o

and

-1
.Ua(Z) = 5 at [I_{a {5H] S‘ dz cos kz exp (~-18z) .
C -Z
o

(7.13)

(7.14)

(7.15)

(7.16)

(7. 17)

{7.18)

It may be noted that (7..16). is correct only to (kh)'l. The reason is that

a term of the order (kh)'z must be added to correct for the fact that A(z)

does not vanish for |z| > h. When kZ >> 1, the function U, of (7.18).

may be evaluated by the procedure used to derive (7.8:-9):.

U, (2) = = [n (b/a)] ' [1 - i/ (k2Z)] .

(7.19)

© e Gt NG

’ll

. 13)

14)

15)

16)

17)

18)

9)




13)

14)

15)

16)

i7)

18)

9)

Xy
2

v 220

ey

Ll asec

mm}nmr%@mﬁﬁmmmmmm e

T 0 Yy T R T S A AR X B PN R R NN S L mrranesr s o m o

TR2I8 -23-

The radiation conductance G° is just 2Re Y Y since the driving voltage has
been taken to be 1, The factor 2 here comes from the fact that there are
two wires. It follows from (7. 16) that

-1
G° = -4% [ImS,(h) + ImC_ U_ (h)].

(7. 20)

This is fortunate since the imaginary part of Sa is simpler than the real part.

So far only the simplifying azsumption (7. 5) has been used. In order to
get explicit and useful answers, the further assumption that kb << 1 is to be
made. In this limit, the first few terms for r , hc and Im Sa(h) are found

in Appendix Bto be

2.2 2.2
!nr K k4% 1

S N _ In(Eb) +Y - 116,
3in (b/a) 6 ry

= In (b/a) ’
(7.21)
. ¥ ? af ;. Lo RE/MK, (RE/) - K(H
c 3 3— In (b/a) ’
. °
(7.22)
and
2.2 2.2 -
k®b k“b 1 In (kb) +y- 11/6
Im S, (h) = - 3 1 - -2 Ip.
m S, 2 4[tn.(b/a.)-]i 6 ‘2 In (b/a)
(7.23)
The substitution of (7. 13), (7. 19) and (7. 23) into (7.20) gives
G® = ro_;-%.mzy - 2 40 2ims_(n)
2
+ l-r - 3.a FsinZk(h +he) /kh
Y4
1+r +r[2cosZk(h +h) +asin2k(h +h_}/kh
(7.24)

-3

g

ENDTETEON

prrrenterams

R, . . - B i ~ 3

ge has

} are

{7.20)

al part.

der to
s to be

ound

(7.21)

(7.22)

1i/6 ]

(7.23)

)/kh
(7.24)



ge has

; are

(7. 20)

al part.

der to
s to be

ound

L
(7.24)

~ -~

wovarhiiiehiy b iINGSEL

a—
e mrse.

3 £2a0ia mats o

oo A rs g

TR318 -24-

The term "near resonance'' shall be used to refer to the situation where

,Ca.l in {7. 20) is of the order of magnitude (kb)l'z. Near resonance, the first
term in the braces of (7.24) iz smaller than the second\ by a factor of the order
(kb)'4, and hence may be neglected. As a function of h, the second term
shows sharp maxima in the vicinity of k(h + hc) ~{n + % ) *. From the point
of view of carrying out sxperiments on the power radiation from a two-wire
line, the widths of these resonances are of interest. Let & be the total half-
power width, i.e., the interval on the h-axis where G® is larger than half of

the maximum value. of G°, then
k6 = - tal, (7. 25)
independent of n, This is accurate to the order (kh)'1 but not (kh)'Z .

In (7. 22), hc is expressed in terms of an integral with the re.lative error
(kb)Z . This integral remains to be evaluated numerically. When In (b/a)>> i,

a condition almost never fulfilled in practice, an approximate evaluation is

possible:
a0
ho~oim [ano/an ™! ar £ i 0 - min -,
(o]

(7.26)

This integral can be evaluated by shifting the contour of integration and applying

the Weber-Schafheitlin integral:

h, ~ % b/ tn (b/a) . (7.27)

This formula is due to King 8 , whose derivation is much simpler.
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Eaquations (7. 22) and (7. 24) give the required answers on the two-wire
line., However, it is desirable to calculate the so-called radjation resistance
for comparison with the theory of Storer and King9. Attention will be re-
stricted to the case kb <<1 and kh >> 1. The radiation resistance R is
defined as G® divided by the square of a "maximum" current. In the theory
of Storer and King, a sinusoidal current is assumed on the two-wire line, and
thus this definition is meaningful. From the present point of view, the various
current "maxima' are of slightly different size and thus R® i8 not precisely

defined. Let

—

Lax = 28, ([,C|z+zl)2 n/fn(b/a) ,

(7.28)

Up to (kh)"l , this approximatee the maximum currents near the driving point
with an error of the order (kb)"" in general, but of the order of (kb)'4 near

resonance. With the definition

max 4 (7a 29)

R® is given by

2
R® = w‘lS'oln /a)[1 +r - Isin 2k (h +hc) /(kh)]'1

2
{[ -(2/w}dn(b/a)1m Sa (h][1+ r +21 cos 2k(h +hc) +a -rsin 2k(h + hc)/(kh)]

2 .
+l-r'-3nrsin2k(h+hc)/(kh)} . {7.30)

B e i P e T Ty PN ey N -

T R R

h e

— ».mummu«&;@-mgumliwnmnmm it

Wwire
tance
e-

is

heory

ke, and

arious

isely

(7.28)

point

near

(7.29)

)]

(7.30)



wire
tance
(- X3
Le .
is
heory
le, and

arious

isely

(7.28)

point

near

(7.29)

)]

(7.30)

o -
‘“
3
ki
2
3
X
3
i
1
i

sy ﬁ'i@.v Pl Y

S bk iy

o

" . e e

Y PSSy I B e S ¥

4
%Fm‘wmnl\qmm;ﬁﬂmmwmmmm a4 st s ey oo

TR318 - 26~

The leading term of this is

3 sin 2k(h +h )
e _ -1y 2.2 [ c
R™ = (47) :uk b 2+cos 2ki(h +hc) - SRR .

{7.31)
Except for the end cozx.ectin hc ,» this is derived by the method of Stover and
King in Appendix C. Near resonance, however, the present procedure gives
more information. Here the first term in the braces of {7.30) may be
neglected. Since r -1 r w .2 In l— and l—' -1 + r ~2, (;1.30)
reduces near resonance to .

in 2k(h +h ) sin 2k (h +h
e _ -1 [ sin c] [ l c
R =« goln(b/a) l+a STE -Inl - 3a 3T

(7.32)

Furthermore, near resonance the quantity sin 2k (h +hc)' is of the order of

(kb)2 so that the first bracket may be neglected. Th2 subatitution of (7. 14)

and (7.31) into (7.32) gives finally

2.2 T 3sinzk(h+hc)1
_ -1 2 k“b 1 fn(kb) + Y - 11/6
R® = (4n) g, (kb) {f- == |- n7n)(b/aY) ] - 5 J
(7.33)

Right at the point of maximum powér radiation, the last term is negligible with

the result
R = ¢~} ¢, In(b/a) tnr

in (kb) + Y- 11/6]
- In(b/a) .

(7.34)

—
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Note that, from (7.25), (7.34) may be written as

e -
R = kﬁRC (7.35)

where Rc is the characteristic resistance of the infinite two-wire line.

Eq. (7.34) has been previously reportedw.

It should be emphasized that all results in this section depend on the
initial assumption of a rotationally symmetrical current distribution on each
dipole. In the language of transmission-line theory, the proximity effect of
the two wires has been neglected. This leads to a relative error of the order

of {a/b)® in all the physical quantities studied.
8. The Dielectric-Coated Antenna

A dipole antenna with a thin layer of dielcctric material on the outside
has many interesting properties. When the antenna is relatively short, its
behavior does not differ much from the dipole without the dielectric. When
it is relatively long, it behaves more like a transmission line than an antenna.
In this section, this dielectric-coated antenna is to be studied only from the
point of view of illuminating certain essential points of the procedure used in
this paper. Although this problem is an extremely interesting one, no
quantitative calculations will be made sir z¢ no systematic experimental data

seem to be available for this type of antenna.

The present procedure depends on the solution of 2 Wiener-Hopf integral
equation. Therefore, it is essential that the geometry of the problem be
translationally invariant in the direction of the antenna after the removal of
the perfectly conducting dipole antenna. Accordingly, in studying the dielectric-

coated antenna, the dielectric layer is assumed to extend to infinity in the

it
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+ 2z directions, When the dielactric tube is sufficiently small in cross

section to support no "mode," these extensions may be expected to make no

significant difference. The geometry of the <{ssumed model is shown in Fig. 5.

To avoid unnecersary complications, the dielectric material is assumed to be

nonmagnetic 4+ a dielectric constant ¢ = ¢ € > e

The problem of setting up an integral equation analagous to (1,2) is not
entirely straightforward. It follows from the time-independent Maxwell's

equations that for this geomatry a current distribution

J= 26 (r - a)exp (-ifz) (8.1)

leads to the following electric fieldat r =a ¢

E, (a,2) = afiwe )" G{%) exp (-182) ,

(8. 2)
where

1

—

G(8) =%- 1% {tn < - g3 2 b2+ v-«s/z}- .t e? - th e v/a),

(8.3)
This is approximately valid, in the same sense as (3. 1), when
k'b << 1, (8.4)
where 1
k' = €. z k ., {8. 5)

So far s branch cuts are concerned, G (§) has the same structure as K(%).

On the real axis, when £ > k, {8.3) gives

1
G(%) = - (84 - KB {ln[(rz-kz)z b/2] +v} - et ot e,

(8.6)

1)

2)
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1t follows that on the real axis when § >k, G ) is real with one zero between
k and k'. Call this zero {=k 4 + A wore accurate calculation indicates that
this zero is actually located slightly above the real axis. Thus, within the
present approximation, all integrations along the real axis in the {-plane

should be carried out with the contour C, shown in-Fi,. 6.

Formally, this zero of G(§) at §= ky leads to

im | S d¥ exp {itz) [G(!)]'l [# o.
z™" c
1 (8.7)
However, for the procedure of Part I to work, the inverse Fourier transfurm
of M must approach zero sufficiently rupidly as z—> . In order to get the
kernel K , it is thus necessary to remove from G({) the zeroat = ky .

The simplest way to remove this zero is to define

-1
2 2
R0 =2(8°-k°) G5, (8.8)

With this definition, it follows from (8. 2) that in the present case the integral

equation for the current is
h
-1
Ad(z) = (4w) Ko S dz' Id (z')Kd (z -2 ,
-h

(8.9)
where Kd is the inverse Fourier transform of Rd , and Ad satisfies

a? 2
(d73 + kd )Ad(z) = wp.oeob(z) ,

(8. 10)

for lzl <h. By symmetry and for | 2 |-<h, Ad (z) is given by,
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A (z) = i ¢, (c,cosk,z+ L sink |z}
d ol 34 d d z d '
(8.11)
where
- -1
$q = lwe ) "k, . (8.12)

Eqs. (8.9) and (8. 11) are analogous to (1.2) and (l.4) respectively.
But it should be emphasized that Ad is not the vector potential for this
problem. From this point of view, the use of the vector potential in Part 1

may be considered to be coincidental.

As before, the constant Cd in (8.11) is to be determined from the
boundary condition

I (h) = 0. (8.13)

Thus, the present problem is formulated in terms of an integral equation entirely
analogous to that of the dipole antenna without dielectric coating, the only differ-
ence being in the kernel. In principle, the procedure of Part I may be applied
here, but the details are somewhat more complicated. Without going into the
details, however, sevaral qualitative statements may be made about this

antenna by considering the kernel. First, unless b/a is very large, which
is not feasible practically, kd is quite close to k. Thus, the thin dielectric
coating makes only a slight modification on the behavior of the dipole antenna
unless the antenna is atleast several wavelenyths long. On the other hand,
when z is large, the behavior of Kd(z) is determined almost entirely by that
of Rd(§) in the vicinity of the singularitics at §= + k. Inthis vicinity,

Rd {¥) is qualitatively very simiiar to Ra. {¥) of the last section, Accord-

ingly, a long dielectric-coated antenna behaves like a transmission 1ine.
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In particular, lim h~co Cd in (8. 11) does not exist. That is, the end of the
anterna has a profound effect on the current distribution near the driving point
no matter how long thc antenna ig. This is typical of a transmission line.
This is also in agreement with the experimental observation that any abrupt
bend in the antenna causes significant radiation. Moreover, the present point
of view makes it possible to make a semi-quantitative statement: a bend

causes appreciable radiation unlesse the radius of curvature of the bend is much

In order to make a quantitative comparison with the approach making
use of a surface impedance [K,p. 28], it remains to define the equivalent
radius and the equivalent surface reactance. This is done by writing the

G{T) of (8.3) in the form
1
G(8) = k%- 2% {!n[(kz- £3% b/2] - e lan/apy- ni/%}

- ot e? o k%) tn(ra).
(8. 14)
The second term of (8. 14) gives immediately the surface impedance per unit
length
2 =-ieL, (8.15)

where the inductance per unit length L is

L = Bo (211')'1 tn (b/a) (l-er-1 ).
(8.16)
On the other hand, the tirst term on the right hand of (8. 14} gives the
equivalent radius ay in the form
1/e r
ay = b (a/b) (8.17)
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A dipole antenna of radius & waith 2 dielectric coating of relative dielectric

constant e and thickness b - a 1is equivalent to a dipole antenna of radius

ay and surface impedance per unit length -iwkL.
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Appendix A

This appendix is devoted to the detailed derivation of (4.13-15). It
follows from (4.1) that 8(Z) has the integral representation

a
S(Z):--% S {[d‘s‘ (2@ - tn2)- ln’s’(§+1)]'1

o
- {2(8 - m2) +2wi- tn E(E +1)1'1}

{(1 +8) ! exp[2ikZ (1+4£)] - &) exp(2ikZE) +[5(1 + 5 ]! } .

(A.1)
Let S be a large number, then
< -1
S“ dg {[z(no— In2)- mEE+]
o
-[2(8, - In2)+27i- WE(E+ 1)]"}[’9“1 &+
= In {1+1ri[ﬂo- Inz-tn ]°1} s (A, 2)

and

Q0
2 S‘ de{[z(no- fh2)-2t(E+1]"!
(]

-[Z(Qo— In2)+27i-2 1n(§+1)]'}(§+1)'1

= In {f+ni[0°—ln2- In 3]'1} - !n{l +ﬂi[0°-ln2]°l}‘

J
(A.3)
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On the other hand, approximately

o8]
‘S‘ da§ {[z(ﬂo “tn2)- mE(E D)7 l2®@ - In2) - 24n(§+ 1)]'1}(6 +7!
o

~ - f) a8 [2@, -t 2)- 2tn (E+ D] 2 an [(£+ 0/g] (g+ 7

°

~ ? d‘s‘[z(ﬂo-zn?.)-zznz]'z g+ 1)/g) (g + 17}

[+]

2
=& [2@ -2 m2]?. (A.4)

Similarly,

f dE{[z(no - in2) +2ni -2nE(E+ 1) ]‘1

[

‘- [z(ﬂo- In2)+2ni-z!n(1+§)l'l} (§+1)‘1

2
~ w -2
- T [Z(Qo-zan)'l-Z‘n'l] “ (A. 5)
The cambination of (A. 2-5) yields

Kl dE{Z(ﬂo -n2)-mé&ig+ 1,}‘1 -[z@ -t 2) +2m - Ang(E+ D] [§(1+*§)]’1

o

2
- 1n {Hri (8, - In z]‘i} + —’;—{[z(no-zzn 2]7%-[2@_ -2m2) + Zni]'z} )
(A.6)
It remains to study the other two terms of (A.l). It follows from (4. 16-18)

that

~
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!

dg {[Z(ﬂo- In2)-tnE( E+ 1)]“1 - [z(po- In2)+ zﬂ-tne(sﬂ)]'l}'s"lexp (2ikz§)

[ 23
o (ap et o ﬁazm - (n g+t - (02 - (B
J

o

[ o] r
= S‘ df e S t[nz(Z) - (tng +y)? [8,(2) - (zng+y)]}
o

- ﬁ“z‘z’l'l “3‘2)} A ﬁ“?-‘z”dz' [“3‘2”-} TS

[o o]
S dg {“"o -tn2) -ng (E+ 1]}
o]

Also,

-{2@, - In2) + 2mi - W& (§+ 1)]‘} (1 +85) ! exp [21kz (1 +6))

~ i (2kZ)"} exp (2 ikZ) {[sz?_(z.)'1 - [03(2)]‘1

(A.8)
The substitution of (A.6-8) into (A. 1) yields (4. 13).
Next, it follows from (4. 1-2) that
T(Z) - iS(Z) =i S‘ a8 M (%) (§+k)'1 exp [-i (§+Kk) 2],
S (A.9)
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or , [s.]
T(Z) - i 8(Z) = -i ‘S‘ dt £ ' exp (2ikZ E)
o

{[z(no -Mn2- mE@1+E)]t- [2@, -tn2) +27i -n &(1+§)]'1} .

(A. 10)
Eq. (4. 14) follows from (A.7) and (A. 10).

Finally, it follows from (4. 10) that

(Z) = -i df (2@ -In2) - M E(14E)]7 - [2@ -in2) +2mi - mE (1+5]

A J

{(l+§)-lexp[i2kZ(l +&)] + §.1e:<p(i ZkZE)}. (A.11)

Eq. (4. 15) then follows from (A. 7}, (A.8) and (A.11).
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Appendix B

In this appendix (7.21-23) are to be derived. For this purpose, it is

convenient to define, with (7. 12},

A= -In r-Zikhc = In[L (k) /T, (-k)]

(B.1)
Since
Ra (k) = Ka( -k) = 2 4n(b/a), (B.2)
it is 1180 convenient to introduce
R, (5 = K, (0)/[2 tn (b/a)]. (B.3)

Then,
I, (5 =-[WE (8], - 3 m[2 lb/a)].
(B.4)

It follows from (B. 1) and (B.4) that

-1 .
a= - (wi)" ! x S at (e . k% g (%),

c;o (B. 5)

But the integrand here is bounded in the neighborhoods of § = + k. Thus, the

contour Co may be replaced by the real axis:

-1 '
at(¢%-x% k. (9.

a

'
o (/38

(B. 6)
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Since the intergrana is real for § > k, only the part 0 < { < k contributes to r

Write
R (B.7)
where
1 1 1
2 2
2 2 ('1) 2 W2 (1) 2 :
. -1 w_iﬁ[‘(k-f)']fﬁ a(k“-8%) ] -H b(k-!)‘}
A1=ﬁ§d§(rz-kz) mn o | ki L
" ° 22n(b/a)
(B.8)
and
L 1 i
2 2 2
. ——’&?dr(:z 27 1{al¥%- kA 1K [a(e?- k%) ]- K [b (8- kD) ]
2 - J
X  (b/a)
{B.9)
First AZ is tc be calculated to the accuracy (kb)z. The change of variable
i
£= b(tl-kH 2 (B. 10)
gives
8, = vl 2ikb (S, +85,), (B.11)
where
Qo
s, = S' 4 £2% {[ tub/a]’1 (I, (a§/b) K (a £/b) - Ko(’s’)]}
o
(B. 12)

depends only on the ratio bh/a, and

v~

5, = Tdf £ (524 x%b%)

o

-&h tn{El‘n b/a}” l[Io(a.E /b) K _(a€/b) -KO(E)}-

(B. 13)

s
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S2 may be determined approximately by expanding the logarithmic factor in

powers of §, If &' = §(kb)'i, then

© -1
S, = kb [4In(b/a)] " S ag' £ [(82+1) -8 [V - 1+n (kbE1/2)].

° (B.14)
This gives finally

s, =xb[4fa(b/a)] " [2-V- I (kb)]. (B. 15)

In order to get any new results on the radiation resistance o’ the two-wire
line, it is necessary to calculate r to the accuracy (l':b)4. Therefore, the real
part of Al should be calculated to the accuracy ikb)4, the luaginary part only

to (kb)z. For this purpose, write Al in terms of the new variable of integration

£=al-th 2, 1

k -4
2
a, = -nt2ik g at &1 82 an dwi [2 tup/a)) I @8 H DR B - u{HbE)
(o]

{B. 16}
Now the logarithm may be expanded, keeping terms up te b4, but neglecting

az. This gives the result
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The rest of the calculation is tedious but straightforward. Because of the

difference of accuracy required in the real and imaginary parts, it is advan-

tageous to write them geparately. The reai part gives (7.21) aund the

imaginary part turns out to be vimply

= am 2kb S

-1
20

‘Eqgs, (B. 1l) and (B. 18) may be combined to yield

which is the same as (7. 22).

Im A= Zk'uS1 /r ,

In order to get (7.23), write the Sa(Z) of (7.17) in the form

where

Sal(z) =

and

5,(2) = §,(2) +5,,(2) ,

8,,(2) = - %- y dt [R‘a ( t')]‘1 - Ka(k)]'l
o]
(o]

k-8 Pexp[i(k-8)Z] +(k+ O Lexp[-1(k+8) 2]

To the order (kZ)'1 , Saz(Z) is real. Therefore, approximately

Im S,(2) = Im§,,(2).

{B.18)

(B. 1n)

(B. 20)

d {i‘:am)‘l - [%, (k)l"}[(k-c ;o ket 7Y

(B.21)

(B.22)

{B.23)
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Similar to the case of In r, the imaginary part of Sa 1(4‘5.'.) comes only from the
range 0<¥ <k, By series expansion, it follows from (B.21) and (B.23) that

1
Im 5,(2) = -k [ £n (b/a)] "} Im S ag el?-gy ¢
o

“l[(y-1+tm BE. T, it Sl S Wk Sl
z2 "2

{(ln-:-) (=g~ - T - 128

-2 2  4p4
i,“b"§
T R }
(B. 24)

This integrand differs from that of (B.17) only in the absence of 1/2. Thus,
(7.23) follows.
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Appendix C
In order to derive (7.31) by the method used by Storer and King, the
current distribution is assumed to be
I(z) = sink(h- [z]), (c.1)
The tangential component of the vector poicntial at large distance is irumedi-

ately verified to be
Atan(o,d) = Constant [cos {kh cos Q) - cos kh] cos ¢ ,
{C.2)

where the constant is independent of k, h, 0, and ¢ . Integration over 0 and é

leads to

3 sin 2kh
—Zx®s -l

e _ 2
R” = Constant [1 + 2 cos” kh - 3 (C.3)

The constant here may be determined by the observation that at resonance

fi.e., kh = (n+ % ) ] the present case is identical to that treated by Storer

and King. Except for hc , this gives (7.31) .
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